

Empirical Bayesian Kriging and EBK Regression Prediction in ArcGIS

Eric Krause

Sessions of note...

Tuesday

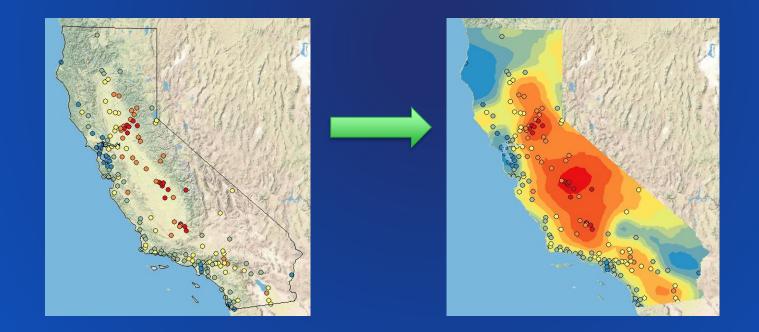
- Interpolating Surfaces in ArcGIS (1:00-2:00 SDCC Rm33C)
- Kriging: An Introduction to Concepts and Applications (2:30-3:30 SDCC Rm33C)
- Geostatistical Analyst: An Introduction (4:00-5:00 SDCC Rm30C)

Wednesday

- Surface Interpolation in ArcGIS (11:15-12:00 SDCC Demo Theater 10)
- Empirical Bayesian Kriging and EBK Regression Prediction in ArcGIS (2:30-3:15 SDCC Demo Theater 10)

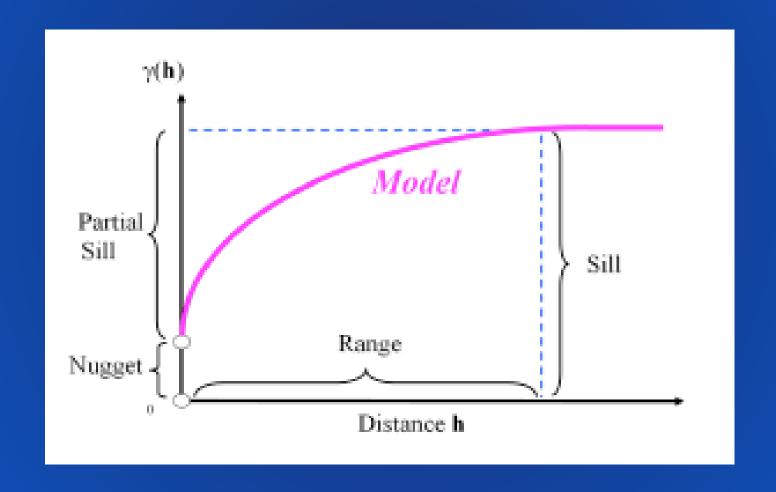
Thursday

- Geostatistics in Practice: Learning Interpolation Through Examples (8:30-9:30 SDCC Rm30A)
- Polygon-to-Polygon Predictions Using Areal Interpolation (11:15-12:00 SDCC Demo Theater 10)
- Geostatistical Analyst: An Introduction (1:00-2:00 SDCC Rm30A)
- Using Living Atlas Data and ArcGIS Pro for 3D Interpolation (2:30-3:30 SDCC Rm 30C)
- Interpolating Surfaces in ArcGIS (4:00-5:00 SDCC Rm15A)
- Kriging: An Introduction to Concepts and Applications (4:00-5:00 SDCC Rm15B)


÷

Geostatistical Analyst Resources http://esriurl.com/GeostatGetStarted

- GeoNet community.esri.com
 - Blogs
 - Free textbook and datasets
 - Spatial Statistical Analysis For GIS Users
 - Lots of discussions and Q&A
- Learn GIS learn.arcgis.com
 - Model Water Quality Using Interpolation
 - Analyze Urban Heat Using Kriging
 - Interpolate 3D Oxygen Measurements in Monterey Bay


What is interpolation?

- Predict values at unknown locations using values at measured locations
- Many interpolation methods: kriging, IDW, LPI, etc

4

Semivariogram Modeling

+

Empirical Bayesian Kriging

Advantages

- Requires minimal interactive modeling, spatial relationships are modeled automatically
- Usually more accurate, especially for small or nonstationary datasets
- Uses local models to capture small scale effects
 - Doesn't assume one model fits the entire data
- Standard errors of prediction are more accurate than other kriging methods

Disadvantages

- Processing is slower than other kriging methods
- Limited customization

How does EBK work?

- 1. Divide the data into subsets of a given size
 - Controlled by "Subset Size" parameter
 - Subsets can overlap, controlled by "Overlap Factor"
- 2. For each subset, estimate the semivariogram
- 3. Simulate data at input point locations and estimate new semivariogram from the simulated data
- 4. Repeat step 3 many times. This results in a distribution of semivariograms
 - Controlled by "Number of Simulations"
- Mix the local surfaces together to get the final surface.

EBK Regression Prediction

- Allows you to use explanatory variable rasters to improve predictions
- Automatically extracts useful information from explanatory variables
- Uses Principle Components to handle multicollinearity

4

Transformations

- Two available transformations
 - Empirical Fits a smooth distribution to the data, then transforms to normal distribution.
 Useful for data that is not bell-shaped
 - Log Empirical Takes logarithm of data before performing Empirical transformation.
 Useful for data that cannot be negative (eg, rainfall)

4

Data in Geographic Coordinate Systems

- Euclidean distance for geographic coordinates is very inaccurate, particularly far from the equator
- EBK uses chordal distances
 - Chordal distance is the 3D straight-line distance between points on a spheroid
 - Accurate approximation to geodesic distance up to 30 degrees

Demo

Eric Krause

