
34 au  Fall 2021  esri.com/arcuser

Data-Driven Map
Animations for the Web
By Kristian Ekenes

Data-driven maps answer questions about location
data, such as Where? What? How much? and When?
Data-driven maps often tell a story from a single data
snapshot. For example, a map using 2020 United
States Census data will only reflect the state of the
US population on April 1, 2020.

 Figure 1. A single hurricane is often represented by multiple
locations, each with a unique time stamp. Each location is a
feature in the layer that is filtered as the animation plays, giving the
appearance of a single hurricane moving along a path over time.
See the app at https://bit.ly/3oioaIQ.

 Figure 2. Earthquakes represent a sequence of events at various
locations in fleeting moments of time. Geometry animations
are ideal for animating the foreshocks and aftershocks of an
earthquake. See the app at https://bit.ly/3oipXxy.

const start = new Date(2004, 9, 1);
const next = new Date(2004, 9, 1, 7);
const end = new Date(2005, 0, 15);
layer.timeInfo = {
 startField: “ISO_time”,
 fullTimeExtent: {
 start,
 end
 },
 interval: {
 value: 6,
 unit: “hours”
 }
}
const timeSlider = new TimeSlider({
 container: “timeSlider”,
 playRate: 30,
 mode: “time-window”,
 fullTimeExtent: layer.timeInfo.fullTimeExtent,
 values: [start, next],
 stops: {
 interval: layer.timeInfo.interval
 },
 view: view
});

35esri.com/arcuser  Fall 2021  au

Developer’s Section

However, data-driven animations can provide a broader
perspective. They can let you see how data changes over time.
Animations go beyond answering the basic Where? What? How
much? When? questions for a single time frame to answer ques-
tions such as
	• How did the city grow to be the size it is today?
	• How fast is the planet warming compared to 50 years ago?
	• What will the population of the planet look like in 20 years?

	 With the ArcGIS API for JavaScript, you can create dynamic and
interactive data-driven animations that fall into three categories:
	• Geometry animation
	• Distribution animation
	• Attribute animation

	 Each category is characterized by a specific data structure and
code pattern for stepping through the animation sequence. Use
cases, the data structure, and the code pattern are provided for
each category.

Geometry Animation
This category animates by filtering feature visibility. A geom-
etry animation visualizes features that change position or geom-
etry over time. A hurricane’s location over time, a fire perimeter’s
morphing boundary, or the route of a vehicle shown as a point
moving along a path are examples of geometry animation. This
type of animation can also be used to represent fleeting events,
such as earthquakes, that happen in a single moment in time but
usually occur clustered with other similar events.
Data Structure
The data used in a geometry animation represents the map’s sub-
ject (e.g., hurricane) as one or more rows in a table, each containing
a unique geometry and time stamp. In the hurricane example, one
hurricane may have 20 or more associated features, each at a dif-
ferent location and time.

 Figure 3. Geometry animations must be driven by data sources that contain one feature per event (a time stamp and a location) of an
associated subject in the map. In this example, tropical storm Gritelle is represented in the table in six rows—each with a different location
and time representing its six recorded positions.

Code Pattern
To visualize features that change location over time, you must
filter features in the layer view based on a predefined time interval
and update that filter on each animation frame. Fortunately, the
TimeSlider widget does all the heavy lifting for you in this scenario.
All you do is provide the slider with a reference to the view where
the animation will take place and set the time information on the
layer or its associated service, as shown in Listing 1.

 Listing 1

const renderer = {
 type: “simple”,
 label: “Observed hurricane location”,
 symbol: {
 type: “picture-marker”,
 url: “cyclone-marker.gif”,
 height: 20,
 width: 20
 },
 visualVariables: [{
 type: “size”,
 field: “Category”,
 stops: [
 { value: 1, size: 12 },
 { value: 2, size: 16 },
 { value: 3, size: 20 },
 { value: 4, size: 24 },
 { value: 5, size: 28 }
]
 }]
};

36 au  Fall 2021  esri.com/arcuser

	 When the user clicks the Play button on the slider, the slider man-
ages the filtering based on the slider thumb positions. In the hurri-
cane app, clicking Play updates the layer view with a series of filters
that makes each hurricane appear as if it is moving along a path.
	 In this animation, the renderer (or style) of the layer is fixed. An
animated GIF represents each location of each hurricane. Each
icon’s size is scaled based on the hurricane’s category number, as
shown in Listing 2.

Distribution Animation
Distribution animations visualize the distribution of features as
they accumulate over time by changing color break points or stops.
Unlike geometry animations, this technique does not involve

 In this table of data for more than 1,000,000 New York City buildings, each row contains data about a building, and one column
represents the year of construction for each building. Building geometry never changes.

 Figure 4: (left) Buildings constructed in New York City in
1900. The large number of bright blue building footprints
indicates rapid growth in construction. (center) The lack
of blue in this map indicates slow construction growth
in 1940. (right) In 2007 there was sporadic, moderate
construction growth throughout the city. See the app at
https://bit.ly/2ZsRFxB.

 Listing 2

function animate (startValue) {
 var animating = true;
 var value = startValue;
 var frame = function (timestamp) {
 if (!animating) {
 return;
 }
 value += 0.5;
 if (value > 2017) {
 value = 1880;
 }
 setYear (value);
 //Update at 30fps
 setTimeout(function () {
 requestAnimationFrame(frame);
 }, 1000 / 30;
 };
 frame();
 return {
 remove: function () {
 animating = false;
 }
 };
}
function setYear(value) {
 sliderValue.innerHTML = Math.floor(value);
 slider.viewModel.setValue(0, value);
 layer.renderer = createRenderer(value);
}
{
 type: “color”
 field: “CNSTRCT_YR”
 legendOptions: {
 title: “Built:”
 },
 stops: [
 {
 value: year,
 color: “#0ff”
 label: “in” + Math.floor(year)
 },
 {
 value: year -10,
 color: “#f0f”
 label: “in” + (Math.floor(year) - 20)
 }
 {
 value: year - 50,
 color: “#404”
 label: “before” + (Math.floor(year) - 50)
 }
]
}

37esri.com/arcuser  Fall 2021  au

Developer’s Section

moving features. It simply shows where and when static features
are added to the map. It is a good technique for visualizing increas-
es and decreases and showing if change happens rapidly or slowly.
	 For example, you can use this method to show the growth of a
city by animating when buildings were constructed since its found-
ing. You can use color to highlight the rate of growth of features
that persist and are not fleeting (like an earthquake).
	 The example in Figure 4 visualizes not only when New York City
buildings were constructed but also how rapidly they were built
each year. As the slider advances from year to year, building color
changes. Each building flashes bright blue at the year it was con-
structed. It gradually fades to a dark purple color as the current
time in the app continues to advance. More blue areas indicate
faster growth. More purple areas indicate slow or no growth.
Data Structure
This animation style works well when you have a layer or table in
which each feature represents one object in the map, such as a
building, as shown in Figure 4. Each feature is represented with a

single, static geometry and includes a date field containing the date
or order in which the feature was created. Alternatively, each feature
can have a number field that contains a year or sequence number.
Code Pattern
Rather than accumulatively filtering data to show the growth of
features, the code for the app shown in Listing 3 first loads all data
in the browser and assigns it a style that will update on each anima-
tion frame.
	 The animation begins with 1880, the oldest year in the dataset.
For each animation frame, the baseline year is updated so features
matching the year on the slider are highlighted, and a function is
called to update the color stops of the layer based on that year.
Note that the reference to the date value (i.e., CNSTRCT_YR) and

 Listing 3

38 au  Fall 2021  esri.com/arcuser

the colors in the renderer remain constant. However, as the current
year changes, all color stops are offset from the updated year by
constant intervals of 10 and 50 years. The constant increment in
stop values results in a smooth animation. The interval between
stops must remain constant throughout the animation.

Attribute Animation
Attribute animations change a renderer’s data or attribute value. In
these animations, features have fixed locations and are animated
using the change in the layer’s attribute value over time. For exam-
ple, you could use this technique to animate the following:
	• Temperature change over the course of a day in a layer repre-

senting weather stations
	• Change in the number of COVID-19 cases from day to day in a

layer of counties
	• Climate change using data in a gridded layer in which each

feature represents a location with temperatures that have been
recorded for more than a 120-year period

Data Structure
Attribute animations require that each feature is represented by a
single row in a table with multiple columns containing the value of
an attribute recorded at different time stamps or intervals. Typically,
each column name reflects the variable and the time or date at
which it was recorded (i.e., one field per variable per time interval).
	 For example, to animate temperature anomaly data for a grid-
ded layer, each record in the layer would have a geometry along
with a column containing the anomaly value for each recorded year.
If you want to animate a large amount of data, this can result in very
wide tables. As an alternate technique, if the interval is constant
between values, you can store multiple values as a pipe-separated
list within a single column. You could then parse the required value
using an ArcGIS Arcade expression.
Code Pattern
To animate a changing attribute in static geometries, you must
update the layer’s renderer on every animation frame (any renderer
can be used in this animation scenario). The attribute animation
technique is distinctly different from the distribution animation
in that you must keep all renderer break points, stops, and other
properties constant in the animation, except for the reference to
the data value.
	 It is extremely important to keep a renderer’s properties con-
stant so you can easily compare change in each feature between
frames. For example, if you changed which value a specific color
represented, the animation would be unreadable and communi-
cate nothing to the audience.
	 In this animation technique, each animation frame calls a function
that gets a reference to the renderer. This function then matches

 This animation shows active COVID-19 cases per 100,000 people
on (a) May 1, 2020; (b) August 1, 2020; (c) November 1, 2020; and (d)
December 1, 2020. Each row in the table represents one county, and
each column represents the number of COVID-19 cases for one day.
See the app at https://ekenes.github.io/covid19viz/.

A

B

C

D

Share
 Your Story
in ArcUser

esri.com/ausubmission

Write an article for ArcUser
magazine. Tell the GIS world
how your organization saved
money and time or acquired new
capabilities using GIS. Share your
GIS management insights or your
expertise in extending the GIS
functionality of Esri software.

Copyright © 2021 Esri. All rights reserved.

39esri.com/arcuser  Fall 2021  au

Developer’s Section

Feature to Animate

Location
Animation

Distribution
Animation

Data
Animation

Moving positions or changing geometry 

A fleeting event in time and location 

One feature with its time of creation  

Changing data values in the same location 

 Table 1

Animation Type Example Data Structure Code Pattern

Geometry animation Moving objects (hurricanes
or vehicles) or fleeting
events (earthquakes)

One row per feature per
event (e.g., one hurricane
will have multiple rows, each
with a unique geometry and
time stamp)

Use the default TimeSlider
behavior to filter features in
the view.

Distribution animation Shows growth in the
distribution of features
(e.g., buildings animated
by construction year)

One row per feature.
Each feature has a date
or number field indicating
when it was created.

Change the renderer on each
slider update. The renderer
field is constant, but the
stop/break values update
based on the slider value.

Attribute animation Animates how data
changes over time in static
locations (like temperature
in weather stations or
population of cities)

One row per feature.
One column per data
attribute per time
interval (e.g., a column for
population in 2000, another
for population in 2010).

Change the renderer on each
slider update. All renderer
properties are constant, but
the field referenced by the
renderer updates based on
the slider value.

 Table 2

the slider’s year or date with a corresponding field in the layer and
sends that new field name back to the renderer. This slight change
to the renderer will refresh the map, updating the visualization to
represent the new set of data values.
	 Because all data values are encoded on the vertices of features
in the GPU, you can simply reference the next value in the se-
quence to create a smooth animation with very fast performance
(up to 60 frames per second).

Conclusion
With the performance and drawing improvements in the ArcGIS
API for JavaScript over the last few years, you can now create
smooth, dynamic, interactive, and performant data-driven anima-
tions with data you own in feature layers, CSV, GeoJSON, and OGC
layers. If you’re not sure which animation technique is right for you,
look at Table 1.

Summary
Table 2 summarizes each technique, data structure, and coding
pattern for creating the animation in the ArcGIS API for JavaScript.

About the Author
Kristian Ekenes is a senior product engineer on the ArcGIS API for
JavaScript team.

