
24 ArcUser Fall 2009										 www.esri.com

ArcGIS supports combined spatial
and attribute queries against
enterprise geodatabase data. The
query in Code Listing 2 restricts
the number of rows traversed
because features must be
contained in the red box and
have an area greater than
121,000. Those features are
highlighted in yellow.

Achieving better enterprise
database performance

By Robert Stauder, ESRI Applications Developer

for ArcObjects Developers5Strategies

What can ArcObjects developers do to increase
performance of an enterprise application that uses data
from ArcSDE? While many application developers and
database administrators (DBAs) approach database tuning
as an exercise in creating missing indexes, updating
statistics, adding disks or RAM, and analyzing hardware
performance, there are other techniques available. Here are
five suggestions, presented in order of increasing difficulty,
that will help developers squeeze more performance from
their applications.

Using the Code Samples and Data
Each performance-enhancing suggestion is illustrated with
a code listing that uses the Parcels features class from
the Building a Geodatabase data that comes with the
ArcGIS sample dataset. The Parcels feature class resides
in the LandBase feature dataset of the Montgomery File
Geodatabase. Load the data into an ArcSDE database using
ArcCatalog. Register the Parcels feature class as versioned.
	 Download the code samples from ArcUser Online
(www.esri.com/arcuser). These samples use ArcGIS
9.3.1 and Microsoft Visual Studio .NET 2008. Sample
programs are VB.NET and C# console applications that
use ArcInfo licenses. The code accesses licenses using the
LicenseInitializer classes generated by Visual Studio .NET.
Error, pathing, and null reference checking were omitted to
make samples as lean as possible and improve readability.
	 Finally, these console applications require a path to an
ArcSDE connection file. Use ArcCatalog to copy an ArcSDE
connection file to a directory of your choice and reference
this file when running the programs. Because two of the
samples will change data, create a new version in ArcSDE
and save your connection file referencing that version.

The first performance improvement suggestion involves limiting
how much data an application fetches. The SubFields property of
IQueryFilter, IQueryDef, and ISpatialFilter lists the fields to include
in a query. Set this property to just the fields values you need,
rather than all the data for each row, and you will fetch less data.
The database will search less data and send fewer packets across
the network.

Code Listing 1: Use SubFields

What It Does:

How to Use:

When to Use:

Populate the SubFields property of IQueryFilter, ISpatialFilter, or
IQueryDef with a comma-delimited string of column names.

Use to optimize read-only queries.

One of the most powerful aspects of ArcGIS is the ability to
combine the spatial and attribute components of a query so you
can issue fewer queries and make those queries more selective.
A single query with two filters—spatial and attribute—limits the
number of features searched.

Code Listing 2: Combine Spatial and Attribute Queries

What It Does:

How to Use:

When to Use:

Set the Geometry and WhereClause properties of ISpatialFilter.
Set the SearchOrder property to control which query component
is applied first. SearchOrder has two choices:
esriSearchOrderAttribute sets the search order to attribute first.
esriSearchOrderSpatial sets the search order to spatial first.
Set SearchOrder to the most restrictive option. If your query
geometry is small, choose esriSearchOrderSpatial. If your query’s
where clause is very selective and your geometry larger, choose
esriSearchOrderAttribute. Create a test case and try both options.

Use for any query having both spatial and attribute qualities.
Optimize spatial queries by applying an attribute constraint to them.

www.esri.com										 ArcUser Fall 2009 25

Developer’s Corner

Some Final Words
Improving the performance of an enterprise application means
examining all parts of it. Applications using relational data require
not only good indexes and up-to-date statistics but also good
data access practices. Making queries more selective, caching
data on the client to reduce network trips, and changing batch
delete and update operations are valid performance tuning tricks.
By making the client more efficient, all parts of the enterprise
application benefit.

About the Author
Robert Stauder is an applications developer with ESRI Professional
Services in Redlands, California. After seeing an ArcView 1.0
demo in 1994, he decided to change his career focus to GIS and
joined ESRI in 1996.

Most ArcObjects developers employ either the ITable
DeleteSearchedRows() or IRow Delete methods to remove features
in bulk from a geodatabase table or feature class. Switch to a
low-level interface, ITableWrite, to improve the speed of bulk
deletes. During a feature delete, this interface sends fewer (or no)
messages and bypasses geodatabase behaviors. This can translate
into much faster bulk operations on simple features. Do not use
this method with complex features like geometric networks.

Code Listing 3: Faster Deletes

What It Does:

How to Use:

When to Use:

Use a query filter and fetch rows into an ISet.
Cast the table or feature class queried to ITableWrite.
Pass the ISet to the DeleteRows method of ITableWrite.

Use to improve the speed of bulk deletes on simple data.

Two previous sections discussed how to make queries more
selective. However, if queries are too selective, you may need to
issue too many of them. Query-intensive applications are called
“chatty.” Chatty applications do not perform well.

For example, you query a collection of hundreds of Parcel IDs. For
each ID, you query the database for other features and process
them in some fashion. The excessive round-trips to the server to
fetch more data slows your application. To improve performance,
issue one query with a where clause containing all Parcel IDs,
then store the result set in client-side memory as a Geodatabase
RecordSet inside an in-memory table. Using this approach will
allow you to requery your data without returning to the server.
You’ll also have access to geodatabase table functionality and
geometries within spatial fields.

What It Does:

How to Use:

When to Use:

Build a where clause containing all items you want to fetch.
n	 Create a query filter and set the where clause property to the
 	 where clause you just created.
n	 Create a Geodatabase RecordSet and set the source table
	 property.
n	 Create a new InMemoryWorkspace and save the RecordSet
	 as a table within it.

Use in any situation where you will need to repeatedly query a
feature class or table on the same attribute. Instead of using a
join, query two different feature classes or tables, fetch the data
into client-side RecordSets, then process the data from the feature
classes or tables together.

Code Listing 4: Don’t Be Too Selective (or Chatty)

This example combines the previous two to perform faster
bulk updates. When you invoke the IRow Update or ITable
UpdateSearchRows methods against multiversioned data, ArcSDE
creates rows in both A and D tables. You can mimic this by
deleting the rows using ITableWrite’s DeleteRows, then reinserting
them using an InsertCursor. Before deleting the rows, store a copy
of them in a client-side RecordSet. This method is faster because
ITableWrite will bypass geodatabase behaviors. Use this technique
with simple features only.

Employing a delete-insert will impact the versioning reconcile
process. Reconcile checks for conflicts between two versions by
querying for change types within those versions. One of those
change types is update-update, where a row is updated in one
version, and that same row is updated in another. If you update
your data using a delete-insert, the update-update filter will not
find conflicts because your code only removes and reinserts rows.
Bulk update workflows usually do not care about conflicts. If your
bulk update process must consider conflicts, exercise caution
when using this technique.

Code Listing 5: Faster Updates

What It Does:

How to Use:

When to Use:

Query and fetch features into an ISet and a RecordSet.
n	 Pass the ISet to the DeleteRows method of ITableWrite to
	 remove the features from the database.
n	 Loop through the features in the RecordSet, inserting features
	 and modifying them as necessary.
This works against both spatial and tabular data.

Improve speed of bulk updates on simple features.

Visit ArcUser Online (www.esri.com/arcuser)
to download these listings.

For more information, take the ESRI instructor-led
course Building Geodatabases.

